Processing math: 0%

ページ

2013/10/08

epsilon-delta proofs 7

Let random variablesX_1,X_2,\cdots,X_n be i.i.d. and any E(X_i)=\mu<\infty. If we put
Y_n=\frac{1}{n}\sum_{i=1}^nX_i
then law of large numbers says,
P(\lim_{n\rightarrow\infty}Y_n=\mu)=1
It means, for any \epsilon>0 there is a N such that if n>N, |Y_n-\mu|\leq \epsilon and it's probability becomes 1.

In the probability theory, as we are used to write elements w of the sample space explicitly,
P (w |\lim_{n\rightarrow\infty}Y_n(w)=\mu )=1.
Therefore, when 1/j,(j\in \mathbb{N})  is used in place of \epsilon, if a set A is defined by
A=\left\{w |\forall j, \exists N, n\geq N, |Y_n-\mu|<1/j \right\}
, then P(A)=1  .  Furthermore, using symbols of the set theory, if a set A is
A=\bigcap_{j=1}^{\infty}\bigcup_{N=1}^{\infty}\bigcap_{n=N}^{\infty}  \left\{w  |  |Y_n-\mu|<1/j \right\}
, then P(A)=1  .

A epsilon-delta technique can be written in the form like this.




0 件のコメント:

コメントを投稿