Processing math: 2%

ページ

2015/04/30

measures 6

Infinite operations in measurements need the conditions to rulers and things that we want to measure.

At first, rulers m  have to satisfy,

(1) for any a\in\mathcal{F} ,  m(a)\geq 0 ,
(2) m(\phi)=0 ,
(3) if a_1,a_2,\cdots\in\mathcal{F}  ,  a_i\cap a_j=\phi (i\ne j) , then m(\cup a_i)=\sum m(a_i)  (i,j=1,2,\cdots ) . 

, and measured things \mathcal{F} have to satisfy,

(1)\Omega, \phi\in\mathcal{F} ,
(2)if a\in\mathcal{F} , a^c\in\mathcal{F}
(3)if a_1,a_2,\cdots\in\mathcal{F}  , then (\cup a_i) \in \mathcal{F}

C. Caratheodory proved these conditions were closely linked.








2015/04/15

measures 5

At first, infinite operations require that a union of sets is in the \sigma  algebra.
That is to say,
if all I^j\in \mathcal{F} , then \cup I^j\in\mathcal{F} .

In addition, as we want to measure the area of a figure C , m(\cup I^j)  must exist.
Hence, the following thing will be put in axioms.

If all I^j\in \mathcal{F} , and any I^k\cap I^l=\phi , then m(\cup I^j)=\sum m(I^j) .

It means, for example, for any I^k\cap I^l=\phi ,
if m(I^1)=1 ,
m(I^2)=0.4 ,
m(I^3)=0.01 ,
m(I^4)=0.004 ,
m(I^5)=0.0002 ,
m(I^6)=0.00001
\cdots , \cdots , \cdots 
, then m(\cup I^j)=\sum m(I^j)=\sqrt{2} .

This proposition shows a precise and adequate measurement for infinite operations.

If m(\cup I^k)\leq m(C)\leq m(\cup I^l)  and m(\cup I^k)=m(\cup I^l), \mbox{ when } k,l\rightarrow \infty ,
we will get m(\cup I^k)=m(\cup I^l)=m(C) .