At first, rulers m have to satisfy,
(1) for any a\in\mathcal{F} , m(a)\geq 0 ,
(2) m(\phi)=0 ,
(3) if a_1,a_2,\cdots\in\mathcal{F} , a_i\cap a_j=\phi (i\ne j) , then m(\cup a_i)=\sum m(a_i) (i,j=1,2,\cdots ) .
, and measured things \mathcal{F} have to satisfy,
(1)\Omega, \phi\in\mathcal{F} ,
(2)if a\in\mathcal{F} , a^c\in\mathcal{F}
(3)if a_1,a_2,\cdots\in\mathcal{F} , then (\cup a_i) \in \mathcal{F} .
C. Caratheodory proved these conditions were closely linked.