At first, rulers $m$ have to satisfy,
(1) for any $a\in\mathcal{F}$ , $m(a)\geq 0$ ,
(2) $m(\phi)=0$ ,
(3) if $a_1,a_2,\cdots\in\mathcal{F}$ , $a_i\cap a_j=\phi (i\ne j)$ , then $m(\cup a_i)=\sum m(a_i)$ ($i,j=1,2,\cdots $) .
, and measured things $\mathcal{F}$ have to satisfy,
(1)$\Omega, \phi\in\mathcal{F}$ ,
(2)if $a\in\mathcal{F}$ , $a^c\in\mathcal{F}$
(3)if $a_1,a_2,\cdots\in\mathcal{F}$ , then $(\cup a_i) \in \mathcal{F}$ .
C. Caratheodory proved these conditions were closely linked.
0 件のコメント:
コメントを投稿