$m^o: a\in\mathcal{C}\rightarrow x\in\mathbb{R}$
Suppose $m^o$ satisfies;
(1)for any $a\in\mathcal{C}$ , $m^o(a)\geq 0$ ,
(1)for any $a\in\mathcal{C}$ , $m^o(a)\geq 0$ ,
(2) $m^o(\phi)=0$ ,
(3) if $a_1\subset a_2 (\in \mathcal{C})$ , then $m^o(a_1)\leq m^o(a_2)$ ,
(4) if $a_1,a_2,\cdots\in\mathcal{C}$ , $a_i\cap a_j=\phi (i\ne j)$ , then $m^o(\cup a_i)\leq \sum m^o(a_i)$ ($i,j=1,2,\cdots $) .
We calls $m^o$ an outer measure. By using $m^o$ , a following collection $\mathcal{F}$ of sets can be defined.
$\mathcal{F}=\left\{ a\subset\Omega | \mbox{any } e\subset\Omega, m^o(e)=m^o(e\cap a)+m^o(e\cap a^c) \right\}\subset\mathcal{C}$ ,
where $e$ is an arbitrary set in $\Omega$ and $a^c$ is the complementary set of $a$ in $\Omega$.
What properties $\mathcal{F}$ has?
(i)$\Omega, \phi\in \mathcal{F}$
Any collection of sets and $\Omega$ have the empty set $\phi$ .If $a$ is $\phi$ , then $a^c$ is $\Omega$ .
Therefore, when $a$ is $\phi$ , for any $e$ ,
$m^o(e)=m^o(e\cap \phi)+m^o(e\cap \Omega)$ is always true.
(ii)if $a\in \mathcal{F}$ , then $a^c\in\mathcal{F}$ .
As for any set $b\in\mathcal{F}$ $(b^c)^c=b$ , $m^o(b)=m((b^c)^c)$ .
Therefore, when $a$ is $b^c$ , for any $e$ ,
$m^o(e)=m^o(e\cap b^c)+m^o(e\cap (b^c)^c)$ is always true.
(iii)if $a_1,a_2\in\mathcal{F}$ , and $a_1\cap a_2=\phi$ , then $a_1\cup a_2\in \mathcal{F}$ .
( → We will prove this proposition in next post. )
(4) if $a_1,a_2,\cdots\in\mathcal{C}$ , $a_i\cap a_j=\phi (i\ne j)$ , then $m^o(\cup a_i)\leq \sum m^o(a_i)$ ($i,j=1,2,\cdots $) .
We calls $m^o$ an outer measure. By using $m^o$ , a following collection $\mathcal{F}$ of sets can be defined.
$\mathcal{F}=\left\{ a\subset\Omega | \mbox{any } e\subset\Omega, m^o(e)=m^o(e\cap a)+m^o(e\cap a^c) \right\}\subset\mathcal{C}$ ,
where $e$ is an arbitrary set in $\Omega$ and $a^c$ is the complementary set of $a$ in $\Omega$.
What properties $\mathcal{F}$ has?
(i)$\Omega, \phi\in \mathcal{F}$
Any collection of sets and $\Omega$ have the empty set $\phi$ .If $a$ is $\phi$ , then $a^c$ is $\Omega$ .
Therefore, when $a$ is $\phi$ , for any $e$ ,
$m^o(e)=m^o(e\cap \phi)+m^o(e\cap \Omega)$ is always true.
(ii)if $a\in \mathcal{F}$ , then $a^c\in\mathcal{F}$ .
As for any set $b\in\mathcal{F}$ $(b^c)^c=b$ , $m^o(b)=m((b^c)^c)$ .
Therefore, when $a$ is $b^c$ , for any $e$ ,
$m^o(e)=m^o(e\cap b^c)+m^o(e\cap (b^c)^c)$ is always true.
(iii)if $a_1,a_2\in\mathcal{F}$ , and $a_1\cap a_2=\phi$ , then $a_1\cup a_2\in \mathcal{F}$ .
( → We will prove this proposition in next post. )