Processing math: 2%

ページ

2015/05/21

measures 8

Given a map of measurement m^o in a \mathcal{C} which is a collection of sets in \Omega .
m^o: a\in\mathcal{C}\rightarrow x\in\mathbb{R}

Suppose m^o  satisfies; 
  
(1)for any a\in\mathcal{C} ,  m^o(a)\geq 0 ,
(2) m^o(\phi)=0 ,
(3) if a_1\subset a_2 (\in \mathcal{C}) , then m^o(a_1)\leq m^o(a_2)
(4) if a_1,a_2,\cdots\in\mathcal{C}  ,  a_i\cap a_j=\phi (i\ne j) , then m^o(\cup a_i)\leq \sum m^o(a_i)  (i,j=1,2,\cdots  . 

We calls m^o  an outer measure. By using m^o , a following collection \mathcal{F}  of sets can be defined. 

\mathcal{F}=\left\{ a\subset\Omega | \mbox{any } e\subset\Omega, m^o(e)=m^o(e\cap a)+m^o(e\cap a^c)  \right\}\subset\mathcal{C}

where e  is an arbitrary set in \Omega  and a^c  is the complementary set of a  in \Omega

What properties \mathcal{F}  has?

(i)\Omega, \phi\in \mathcal{F}
Any collection of sets and \Omega  have the empty set \phi .If a  is \phi , then a^c  is \Omega
Therefore, when a  is \phi , for any e
m^o(e)=m^o(e\cap \phi)+m^o(e\cap \Omega)  is always true. 

(ii)if a\in \mathcal{F} , then a^c\in\mathcal{F}
As for any set b\in\mathcal{F}  (b^c)^c=b , m^o(b)=m((b^c)^c)
Therefore, when a  is b^c ,  for any e
m^o(e)=m^o(e\cap b^c)+m^o(e\cap (b^c)^c)  is always true. 

(iii)if a_1,a_2\in\mathcal{F} , and a_1\cap a_2=\phi , then  a_1\cup a_2\in \mathcal{F}
 ( → We will prove this proposition in next post. )










0 件のコメント:

コメントを投稿