m^o: a\in\mathcal{C}\rightarrow x\in\mathbb{R}
Suppose m^o satisfies;
(1)for any a\in\mathcal{C} , m^o(a)\geq 0 ,
(1)for any a\in\mathcal{C} , m^o(a)\geq 0 ,
(2) m^o(\phi)=0 ,
(3) if a_1\subset a_2 (\in \mathcal{C}) , then m^o(a_1)\leq m^o(a_2) ,
(4) if a_1,a_2,\cdots\in\mathcal{C} , a_i\cap a_j=\phi (i\ne j) , then m^o(\cup a_i)\leq \sum m^o(a_i) (i,j=1,2,\cdots ) .
We calls m^o an outer measure. By using m^o , a following collection \mathcal{F} of sets can be defined.
\mathcal{F}=\left\{ a\subset\Omega | \mbox{any } e\subset\Omega, m^o(e)=m^o(e\cap a)+m^o(e\cap a^c) \right\}\subset\mathcal{C} ,
where e is an arbitrary set in \Omega and a^c is the complementary set of a in \Omega.
What properties \mathcal{F} has?
(i)\Omega, \phi\in \mathcal{F}
Any collection of sets and \Omega have the empty set \phi .If a is \phi , then a^c is \Omega .
Therefore, when a is \phi , for any e ,
m^o(e)=m^o(e\cap \phi)+m^o(e\cap \Omega) is always true.
(ii)if a\in \mathcal{F} , then a^c\in\mathcal{F} .
As for any set b\in\mathcal{F} (b^c)^c=b , m^o(b)=m((b^c)^c) .
Therefore, when a is b^c , for any e ,
m^o(e)=m^o(e\cap b^c)+m^o(e\cap (b^c)^c) is always true.
(iii)if a_1,a_2\in\mathcal{F} , and a_1\cap a_2=\phi , then a_1\cup a_2\in \mathcal{F} .
( → We will prove this proposition in next post. )
(4) if a_1,a_2,\cdots\in\mathcal{C} , a_i\cap a_j=\phi (i\ne j) , then m^o(\cup a_i)\leq \sum m^o(a_i) (i,j=1,2,\cdots ) .
We calls m^o an outer measure. By using m^o , a following collection \mathcal{F} of sets can be defined.
\mathcal{F}=\left\{ a\subset\Omega | \mbox{any } e\subset\Omega, m^o(e)=m^o(e\cap a)+m^o(e\cap a^c) \right\}\subset\mathcal{C} ,
where e is an arbitrary set in \Omega and a^c is the complementary set of a in \Omega.
What properties \mathcal{F} has?
(i)\Omega, \phi\in \mathcal{F}
Any collection of sets and \Omega have the empty set \phi .If a is \phi , then a^c is \Omega .
Therefore, when a is \phi , for any e ,
m^o(e)=m^o(e\cap \phi)+m^o(e\cap \Omega) is always true.
(ii)if a\in \mathcal{F} , then a^c\in\mathcal{F} .
As for any set b\in\mathcal{F} (b^c)^c=b , m^o(b)=m((b^c)^c) .
Therefore, when a is b^c , for any e ,
m^o(e)=m^o(e\cap b^c)+m^o(e\cap (b^c)^c) is always true.
(iii)if a_1,a_2\in\mathcal{F} , and a_1\cap a_2=\phi , then a_1\cup a_2\in \mathcal{F} .
( → We will prove this proposition in next post. )
0 件のコメント:
コメントを投稿