[the preceding definition] You have to remember;
(1)m^o is an outer measure,
(2)\mathcal{F}=\left\{a\subset\Omega | \forall e\subset\Omega, m^o(e)=m^o(e\cap a)+m^o(e\cap a^c) \right\}
For a_1,a_2\in\mathcal{F} , a_1\cap a_2=\phi ,and \forall e\subset\Omega , we shall prove that
m^o(e)=m^o(e\cap (a_1\cup a_2))+m^o(e\cap (a_1\cup a_2)^c) .
If A=a_1\cup a_2 , then A^c=(a_1\cup a_2)^c=a_1^c\cap a_2^c .
As e=(e\cap A)\cup (e\cap A^c)=(e\cap(a_1\cup a_2))\cup (e\cap(a_1\cup a_2)^c) ,and
m^o is an outer measure,
m^o(e)\leq m^o(e\cap(a_1\cup a_2))+m^o(e\cap(a_1\cup a_2)^c) .
You know that as a_1,a_2\in\mathcal{F} ,
m^o(e)= m^o(e\cap a_1)+m^o(e\cap a_1^c) and m^o(e)= m^o(e\cap a_2)+m^o(e\cap a_2^c) .
For any e\subset\Omega , as this assertion is always true, please replace e to e\cap a_1^c in last equation . Hereby,
\begin{eqnarray*}
m^o(e\cap a_1^c)&=&m^o((e\cap a_1^c)\cap a_2)+m^o((e\cap a_1^c)\cap a_2^c)\\
&=&m^o(e\cap(a_1^c\cap a_2))+m^o(e\cap(a_1^c\cap a_2^c)) \\
&=& m^o(e\cap a_2)+m^o(e\cap(a_1\cup a_2)^c )
\end{eqnarray*}
where as a_1\cap a_2=\phi , e\cap(a_1^c\cap a_2)=e\cap a_2 .
Therefore,
m^o(e)=m^o(e\cap a_1)+m^o(e\cap a_2) +m^o(e\cap(a_1\cup a_2)^c) .
As m^o is an outer measure,
\begin{eqnarray*}
m^o(e\cap a_1)+m(e\cap a_2)&\geq&m^o((e\cap a_1)\cup(e\cap a_2)) \\
&=&m^o(e\cap(a_1\cup a_2)) .
\end{eqnarray*}
We get
m^o(e)\geq m^o(e\cap (a_1\cup a_2))+m^o(e\cap(a_1\cup a_2)^c) .
This assertion reverses an inequality sign on an outer masure.
Since, if '\geq' and '\leq' happen at same time in a equation, then just only '=' is available,
m^o(e)= m^o(e\cap(a_1\cup a_2))+m^o(e\cap(a_1\cup a_2)^c) .
Hence, a_1,a_2\in\mathcal{F}\quad (a_1\cap a_2=\phi) , then
(a_1\cup a_2)\in \mathcal{F}
0 件のコメント:
コメントを投稿