On an arbitrary space \Omega , if there is an outer measure m^o:a\subset\Omega
\rightarrow \mathbb{R} , the collection of sets
\mathcal{F}=\left\{a\subset\Omega|\forall e\subset\Omega,m^o(e)=m^o(e\cap a)+m^o(e\cap a^c) \right\}
could be defined.
It has been proved that for the elements in this collection \mathcal{F} ,
if a_1,a_2\in\mathcal{F},a_1\cap a_2=\phi , then (a_1\cup a_2)\in\mathcal{F} .
Although the proof is not easy, the number of set in the collection can be extended from 2 to \infty . Namely, for a_1,a_2,\cdots and a_i\cap a_j=\phi , then (\cup a_i)\in \mathcal{F} .
The collection \mathcal{F} is called \sigma algebra, and
on \sigma algebra, an outer measure m^o becomes a measure m .
2015/06/10
2015/06/01
measures 9
[the preceding definition] You have to remember;
(1)m^o is an outer measure,
(2)\mathcal{F}=\left\{a\subset\Omega | \forall e\subset\Omega, m^o(e)=m^o(e\cap a)+m^o(e\cap a^c) \right\}
For a_1,a_2\in\mathcal{F} , a_1\cap a_2=\phi ,and \forall e\subset\Omega , we shall prove that
m^o(e)=m^o(e\cap (a_1\cup a_2))+m^o(e\cap (a_1\cup a_2)^c) .
If A=a_1\cup a_2 , then A^c=(a_1\cup a_2)^c=a_1^c\cap a_2^c .
As e=(e\cap A)\cup (e\cap A^c)=(e\cap(a_1\cup a_2))\cup (e\cap(a_1\cup a_2)^c) ,and
m^o is an outer measure,
m^o(e)\leq m^o(e\cap(a_1\cup a_2))+m^o(e\cap(a_1\cup a_2)^c) .
You know that as a_1,a_2\in\mathcal{F} ,
m^o(e)= m^o(e\cap a_1)+m^o(e\cap a_1^c) and m^o(e)= m^o(e\cap a_2)+m^o(e\cap a_2^c) .
For any e\subset\Omega , as this assertion is always true, please replace e to e\cap a_1^c in last equation . Hereby,
\begin{eqnarray*} m^o(e\cap a_1^c)&=&m^o((e\cap a_1^c)\cap a_2)+m^o((e\cap a_1^c)\cap a_2^c)\\ &=&m^o(e\cap(a_1^c\cap a_2))+m^o(e\cap(a_1^c\cap a_2^c)) \\ &=& m^o(e\cap a_2)+m^o(e\cap(a_1\cup a_2)^c ) \end{eqnarray*}
where as a_1\cap a_2=\phi , e\cap(a_1^c\cap a_2)=e\cap a_2 .
Therefore,
m^o(e)=m^o(e\cap a_1)+m^o(e\cap a_2) +m^o(e\cap(a_1\cup a_2)^c) .
As m^o is an outer measure,
\begin{eqnarray*} m^o(e\cap a_1)+m(e\cap a_2)&\geq&m^o((e\cap a_1)\cup(e\cap a_2)) \\ &=&m^o(e\cap(a_1\cup a_2)) . \end{eqnarray*}
We get
m^o(e)\geq m^o(e\cap (a_1\cup a_2))+m^o(e\cap(a_1\cup a_2)^c) .
This assertion reverses an inequality sign on an outer masure.
Since, if '\geq' and '\leq' happen at same time in a equation, then just only '=' is available,
m^o(e)= m^o(e\cap(a_1\cup a_2))+m^o(e\cap(a_1\cup a_2)^c) .
Hence, a_1,a_2\in\mathcal{F}\quad (a_1\cap a_2=\phi) , then
(a_1\cup a_2)\in \mathcal{F}
(1)m^o is an outer measure,
(2)\mathcal{F}=\left\{a\subset\Omega | \forall e\subset\Omega, m^o(e)=m^o(e\cap a)+m^o(e\cap a^c) \right\}
For a_1,a_2\in\mathcal{F} , a_1\cap a_2=\phi ,and \forall e\subset\Omega , we shall prove that
m^o(e)=m^o(e\cap (a_1\cup a_2))+m^o(e\cap (a_1\cup a_2)^c) .
If A=a_1\cup a_2 , then A^c=(a_1\cup a_2)^c=a_1^c\cap a_2^c .
As e=(e\cap A)\cup (e\cap A^c)=(e\cap(a_1\cup a_2))\cup (e\cap(a_1\cup a_2)^c) ,and
m^o is an outer measure,
m^o(e)\leq m^o(e\cap(a_1\cup a_2))+m^o(e\cap(a_1\cup a_2)^c) .
You know that as a_1,a_2\in\mathcal{F} ,
m^o(e)= m^o(e\cap a_1)+m^o(e\cap a_1^c) and m^o(e)= m^o(e\cap a_2)+m^o(e\cap a_2^c) .
For any e\subset\Omega , as this assertion is always true, please replace e to e\cap a_1^c in last equation . Hereby,
\begin{eqnarray*} m^o(e\cap a_1^c)&=&m^o((e\cap a_1^c)\cap a_2)+m^o((e\cap a_1^c)\cap a_2^c)\\ &=&m^o(e\cap(a_1^c\cap a_2))+m^o(e\cap(a_1^c\cap a_2^c)) \\ &=& m^o(e\cap a_2)+m^o(e\cap(a_1\cup a_2)^c ) \end{eqnarray*}
where as a_1\cap a_2=\phi , e\cap(a_1^c\cap a_2)=e\cap a_2 .
Therefore,
m^o(e)=m^o(e\cap a_1)+m^o(e\cap a_2) +m^o(e\cap(a_1\cup a_2)^c) .
As m^o is an outer measure,
\begin{eqnarray*} m^o(e\cap a_1)+m(e\cap a_2)&\geq&m^o((e\cap a_1)\cup(e\cap a_2)) \\ &=&m^o(e\cap(a_1\cup a_2)) . \end{eqnarray*}
We get
m^o(e)\geq m^o(e\cap (a_1\cup a_2))+m^o(e\cap(a_1\cup a_2)^c) .
This assertion reverses an inequality sign on an outer masure.
Since, if '\geq' and '\leq' happen at same time in a equation, then just only '=' is available,
m^o(e)= m^o(e\cap(a_1\cup a_2))+m^o(e\cap(a_1\cup a_2)^c) .
Hence, a_1,a_2\in\mathcal{F}\quad (a_1\cap a_2=\phi) , then
(a_1\cup a_2)\in \mathcal{F}