The multiplication of natural numbers is defined same as that of the addition.
The operation g of the multiplication is a function satisfying following conditions.
(You must remember the function g is also a set.)
(1)g(a,0)=0
(2)g(a,b^+)=g(a,b)+a
,where a,b\in\mathbb{N} and b^+ is the successor set of b . (b^+=b\cup\left\{b\right\})
These mean simply ;
a\times 0=0 ,
a\times (b+1)=(a\times b)+a .
For example,
g(2,3)=2\times(2+1)=(2\times 2)+2=((2\times 1)+2)+2
=(((2\times 0)+2)+2)+2=0+2+2+2=6 .
In addition, the exponent of natural numbers is extended.
By using the multiplication, the function e of the exponent satisfies following conditions.
(1)e(a,0)=1 ,
(2)e(a,b^+)=g(e(a,b),a) .
That is,
a^0=1 ,
a^{b+1}=(a^b)\times a .
If a=2,b^+=3 ,then
e(2,3)=g(e(2,2),2)=g(g(e(2,1),2),2)=g(g(g(e(2,0),2),2),2)=1\times 2\times 2\times 2 .
These are called a finite recursion formula.
0 件のコメント:
コメントを投稿