There are many formulas for π .
One of most known formulas is
\int_{-\infty}^{\infty}\frac{dx}{1+x^2}=\pi, \qquad(-\infty\lt x\lt \infty) .
Please put x=f(t)=\tan t=\frac{\sin t}{\cos t},\quad (t\in (-\pi/2,\pi/2)) .
As we already have known
\cos't=-\sin t,\quad \sin' t=\cos t ,
we will obtain
\frac{dx}{dt}=\frac{df(t)}{dt}=f'(t)=\frac{\cos^2 t+\sin^2 t}{\cos^2 t}=\frac{1}{\cos^2 t} .
Then,
f'(t)=1+f^2(t), \quad\mbox{and}\quad dx=f'(t)dt
f is a monotonically increasing mapping of (-\pi/2,\pi/2) onto (-\infty,\infty).
Thus,
\int_{-\infty}^{\infty}\frac{dx}{1+x^2}=\int_{-\pi/2}^{\pi/2}\frac{f'(t)dt}{1+f^2(t)}=\int_{-\pi/2}^{\pi/2}dt=\pi
0 件のコメント:
コメントを投稿