Processing math: 0%

ページ

2013/12/23

one-sided continuity of a funtion

The definition of the continuity of a function is as follow.

The function f  is continuous, if for any \epsilon>0  there is a \delta>0  such that
|f(x)-f(c)|<\epsilon  
for every points x  for which |x-c|<\delta .

It means that \lim_{x\rightarrow -c}f(x)=f(c)  and \lim_{x\rightarrow +c}f(x)=f(c) .
By the preceding definition of one-sided limits, we are able to expand the continuity or discontinuity of a function.

A function f(x)  is continuous from the right at point c  if \lim_{x\rightarrow +c}f(x)=f(c) .
Similarly, A function f(x)  is continuous from the left at point c  if \lim_{x\rightarrow -c}f(x)=f(c) .

There are three kinds of discontinuity at point c .

(1)Removable discontinuity :  \lim_{x\rightarrow c}f(x)  exists. But \lim_{x\rightarrow c}f(x)\ne f(c) . If we can redefine the function f except a point c , the discontinuity will be removed.
  (\mbox{example})\quad f(x)=\frac{x^2+x-2}{x-1} 

(2)Jump or Step discontinuity : One-sided limits exists.
 (\mbox{example})\quad f(x)=\left\{ \begin{array}{cccc}  -x^2 & (x<0)& & \\  x^2+1 & (x\geq 0)& & \end{array} \right. 
This example means f(x) is continuous from the right at point 0, but not from the left.

(3)Infinite or essential discontinuity : One or both of the one-sided limits do not exist or infinite.
  (\mbox{example})\quad f(x)=\frac{1}{x-1} 


0 件のコメント:

コメントを投稿